MessageQueue
MessageQueue
初识MQ
同步和异步通讯
微服务间通讯有同步和异步两种方式:
同步通讯:就像打电话,需要实时响应。
异步通讯:就像发邮件,不需要马上回复。
两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。
同步通讯
我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:
总结:
同步调用的优点:
- 时效性较强,可以立即得到结果
同步调用的问题:
- 耦合度高
- 性能和吞吐能力下降
- 有额外的资源消耗
- 有级联失败问题
异步通讯
异步调用则可以避免上述问题:
我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。
在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。
订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。
- 为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
- Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。
事件驱动优势
总结
好处:
吞吐量提升:无需等待订阅者处理完成,响应更快速
故障隔离:服务没有直接调用,不存在级联失败问题
- 调用间没有阻塞,不会造成无效的资源占用
- 耦合度极低,每个服务都可以灵活插拔,可替换
- 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件
缺点:
- 架构复杂了,业务没有明显的流程线,不好管理
- 需要依赖于Broker的可靠、安全、性能
好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ技术。
技术对比:
MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。
比较常见的MQ实现:
- ActiveMQ
- RabbitMQ
- RocketMQ
- Kafka
几种常见MQ的对比:
RabbitMQ | ActiveMQ | RocketMQ | Kafka | |
---|---|---|---|---|
公司/社区 | Rabbit | Apache | 阿里 | Apache |
开发语言 | Erlang | Java | Java | Scala&Java |
协议支持 | AMQP,XMPP,SMTP,STOMP | OpenWire,STOMP,REST,XMPP,AMQP | 自定义协议 | 自定义协议 |
可用性 | 高 | 一般 | 高 | 高 |
单机吞吐量 | 一般 | 差 | 高 | 非常高 |
消息延迟 | 微秒级 | 毫秒级 | 毫秒级 | 毫秒以内 |
消息可靠性 | 高 | 一般 | 高 | 一般 |
追求可用性:Kafka、 RocketMQ 、RabbitMQ
追求可靠性:RabbitMQ、RocketMQ
追求吞吐能力:RocketMQ、Kafka
追求消息低延迟:RabbitMQ、Kafka
快速入门
RabbitMQ是基于Erlang语言开发的开源消息通信中间件,官网地址:https://www.rabbitmq.com/
安装RabbitMQ
单机部署
我们在Centos7虚拟机中使用Docker来安装。
下载镜像
方式一:在线拉取
1 | docker pull rabbitmq:3-management |
方式二:从本地加载
在课前资料已经提供了镜像包:
上传到虚拟机中后,使用命令加载镜像即可:
1 | docker load -i mq.tar |
安装MQ
执行下面的命令来运行MQ容器:
1 | docker run \ |
RabbitMQ 的结构和概念
RabbitMQ中的几个概念:
channel:操作MQ的工具
exchange:路由消息到队列中
queue:缓存消息
virtual host:虚拟主机,是对queue、exchange等资源的逻辑分组
集群部署
接下来,我们看看如何安装RabbitMQ的集群。
集群分类
在RabbitMQ的官方文档中,讲述了两种集群的配置方式:
- 普通模式:普通模式集群不进行数据同步,每个MQ都有自己的队列、数据信息(其它元数据信息如交换机等会同步)。例如我们有2个MQ:mq1,和mq2,如果你的消息在mq1,而你连接到了mq2,那么mq2会去mq1拉取消息,然后返回给你。如果mq1宕机,消息就会丢失。
- 镜像模式:与普通模式不同,队列会在各个mq的镜像节点之间同步,因此你连接到任何一个镜像节点,均可获取到消息。而且如果一个节点宕机,并不会导致数据丢失。不过,这种方式增加了数据同步的带宽消耗。
我们先来看普通模式集群。
设置网络
首先,我们需要让3台MQ互相知道对方的存在。
分别在3台机器中,设置 /etc/hosts文件,添加如下内容:
1 | 192.168.150.101 mq1 |
并在每台机器上测试,是否可以ping通对方:
MQ的基本结构:
RabbitMQ中的一些角色:
- publisher:生产者
- consumer:消费者
- exchange个:交换机,负责消息路由
- queue:队列,存储消息
- virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离
RabbitMQ消息模型
RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:
导入Demo工程
课前资料提供了一个Demo工程,mq-demo:
导入后可以看到结构如下:
包括三部分:
- mq-demo:父工程,管理项目依赖
- publisher:消息的发送者
- consumer:消息的消费者
入门案例
简单队列模式的模型图:
官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:
- publisher:消息发布者,将消息发送到队列queue
- queue:消息队列,负责接受并缓存消息
- consumer:订阅队列,处理队列中的消息
publisher实现
思路:
- 建立连接
- 创建Channel
- 声明队列
- 发送消息
- 关闭连接和channel
代码实现:
1 | package cn.itcast.mq.helloworld; |
consumer实现
代码思路:
- 建立连接
- 创建Channel
- 声明队列
- 订阅消息
代码实现:
1 | package cn.itcast.mq.helloworld; |
总结
基本消息队列的消息发送流程:
建立connection
创建channel
利用channel声明队列
利用channel向队列发送消息
基本消息队列的消息接收流程:
建立connection
创建channel
利用channel声明队列
定义consumer的消费行为handleDelivery()
利用channel将消费者与队列绑定
SpringAMQP
SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。
SpringAmqp的官方地址:https://spring.io/projects/spring-amqp
SpringAMQP提供了三个功能:
- 自动声明队列、交换机及其绑定关系
- 基于注解的监听器模式,异步接收消息
- 封装了RabbitTemplate工具,用于发送消息
Basic Queue 简单队列模型
- 在父工程mq-demo中引入依赖
1 | <!--AMQP依赖,包含RabbitMQ--> |
消息发送
- 首先配置MQ地址,在publisher服务的application.yml中添加配置:
1 | spring: |
- 然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:
1 | package cn.itcast.mq.spring; |
总结
什么是AMQP?
- 应用间消息通信的一种协议,与语言和平台无关。
SpringAMQP如何发送消息?
引入amqp的starter依赖
配置RabbitMQ地址
利用RabbitTemplate的convertAndSend方法
消息接收
- 首先配置MQ地址,在consumer服务的application.yml中添加配置:
1 | spring: |
- 然后在consumer服务的
cn.itcast.mq.listener
包中新建一个类SpringRabbitListener,代码如下:
1 | package cn.itcast.mq.listener; |
总结
SpringAMQP如何接收消息?
引入amqp的starter依赖
配置RabbitMQ地址
定义类,添加@Component注解
类中声明方法,添加@RabbitListener注解,方法参数就时消息
注意:消息一旦消费就会从队列删除,RabbitMQ没有消息回溯功能
测试
启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息
WorkQueue
Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息。
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。
此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。
消息发送
先重启RabbitMQ容器,若没有容器则先创建容器
- 重启RabbitMQ 容器
docker ps -a
查看所有容器状态
1 | docker start mq |
- 创建容器
1 | docker run \ |
这次我们循环发送,模拟大量消息堆积现象。
在publisher服务中的SpringAmqpTest类中添加一个测试方法:
1 | /** |
消息接收
要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:
1 |
|
注意到这个消费者sleep了1000秒,模拟任务耗时。
测试
启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。
可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。
- 也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。
能者多劳(消息预取限制)
在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:
1 | spring: |
总结
Work模型的使用:
- 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
- 通过设置prefetch来控制消费者预取的消息数量
发布/订阅
发布订阅的模型如图:
可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:
- Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
- Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
- Fanout:广播,将消息交给所有绑定到交换机的队列
- Direct:定向,把消息交给符合指定routing key 的队列
- Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
- Consumer:消费者,与以前一样,订阅队列,没有变化
- Queue:消息队列也与以前一样,接收消息、缓存消息。
Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!
Fanout
Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。
在广播模式下,消息发送流程是这样的:
- 1) 可以有多个队列
- 2) 每个队列都要绑定到Exchange(交换机)
- 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
- 4) 交换机把消息发送给绑定过的所有队列
- 5) 订阅队列的消费者都能拿到消息
我们的计划是这样的:
- 创建一个交换机 itcast.fanout,类型是Fanout
- 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机itcast.fanout
声明队列和交换机
Spring提供了一个接口Exchange,来表示所有不同类型的交换机:
在consumer中创建一个类,声明队列和交换机:
1 | package cn.itcast.mq.config; |
消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
1 |
|
消息接收
在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:
1 |
|
总结
交换机的作用是什么?
- 接收publisher发送的消息
- 将消息按照规则路由到与之绑定的队列
- 不能缓存消息,路由失败,消息丢失
- FanoutExchange的会将消息路由到每个绑定的队列
声明队列、交换机、绑定关系的Bean是什么?
- Queue
- FanoutExchange
- Binding
Direct
在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
Direct Exchange 会将接收到的消息根据规则路由到指定的Queue,因此称为路由模式(routes)。
每一个Queue都与Exchange设置一个
BindingKey
发布者发送消息时,指定消息的
RoutingKey
Exchange 将消息路由到
BindingKey
与消息RoutingKey
一致的队列
案例需求如下:
利用@RabbitListener声明Exchange、Queue、RoutingKey
在consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2
在publisher中编写测试方法,向itcast. direct发送消息
基于注解声明队列和交换机
基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:
1 |
|
消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
1 |
|
总结
描述下Direct交换机与Fanout交换机的差异?
- Fanout交换机将消息路由给每一个与之绑定的队列
- Direct交换机根据RoutingKey判断路由给哪个队列
- 如果多个队列具有相同的RoutingKey,则与Fanout功能类似
基于@RabbitListener注解声明队列和交换机有哪些常见注解?
- @Queue
- @Exchange
Topic
说明
Topic
类型的Exchange
与Direct
相比,都是可以根据RoutingKey
把消息路由到不同的队列。只不过Topic
类型Exchange
可以让队列在绑定Routing key
的时候使用通配符!
Routingkey
一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如:item.insert
通配符规则:
#
:匹配一个或多个词
*
:匹配不多不少恰好1个词
举例:
item.#
:能够匹配item.spu.insert
或者 item.spu
item.*
:只能匹配item.spu
图示:
解释:
- Queue1:绑定的是
china.#
,因此凡是以china.
开头的routing key
都会被匹配到。包括china.news和china.weather - Queue2:绑定的是
#.news
,因此凡是以.news
结尾的routing key
都会被匹配。包括china.news和japan.news
案例需求:
实现思路如下:
并利用@RabbitListener声明Exchange、Queue、RoutingKey
在consumer服务中,编写两个消费者方法,分别监听topic.queue1和topic.queue2
在publisher中编写测试方法,向itcast. topic发送消息
消息发送
在publisher服务的SpringAmqpTest类中添加测试方法:
1 | /** |
消息接收
在consumer服务的SpringRabbitListener中添加方法:
1 |
|
总结
描述下Direct交换机与Topic交换机的差异?
- Topic交换机接收的消息RoutingKey必须是多个单词,以
**.**
分割 - Topic交换机与队列绑定时的bindingKey可以指定通配符
#
:代表0个或多个词*
:代表1个词
消息转换器
之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。
只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:
- 数据体积过大
- 有安全漏洞
- 可读性差
我们来测试一下。
测试默认转换器
我们修改消息发送的代码,发送一个Map对象:
1 |
|
停止consumer服务
发送消息后查看控制台:
配置JSON转换器
显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
在publisher和consumer两个服务中都引入依赖:
1 | <dependency> |
配置消息转换器。
在启动类中添加一个Bean即可:
1 |
|