多级缓存

什么是多级缓存

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:

image-20210821075259137

存在下面的问题:

  • 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈

  • Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存
  • 访问非静态资源(ajax查询数据)时,访问服务端
  • 请求到达Nginx后,优先读取Nginx本地缓存
  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
  • 如果Redis查询未命中,则查询Tomcat
  • 请求进入Tomcat后,优先查询JVM进程缓存
  • 如果JVM进程缓存未命中,则查询数据库

image-20210821075558137

在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了

因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:

image-20210821080511581

另外,我们的Tomcat服务将来也会部署为集群模式:

image-20210821080954947

可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询

  • 另一个就是在Tomcat中实现JVM进程缓存

其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。

这也是今天课程的难点和重点。

JVM进程缓存

为了演示多级缓存的案例,我们先准备一个商品查询的业务。

导入案例

安装MySQL

后期做数据同步需要用到MySQL的主从功能,所以需要大家在虚拟机中,利用Docker来运行一个MySQL容器。

  1. 准备目录

为了方便后期配置MySQL,我们先准备两个目录,用于挂载容器的数据和配置文件目录:

1
2
3
4
5
6
# 进入/tmp目录
cd /tmp
# 创建文件夹
mkdir mysql
# 进入mysql目录
cd mysql
  1. 运行命令

进入mysql目录后,执行下面的Docker命令:

1
2
3
4
5
6
7
8
9
10
docker run \
-p 3306:3306 \
--name mysql \
-v $PWD/conf:/etc/mysql/conf.d \
-v $PWD/logs:/logs \
-v $PWD/data:/var/lib/mysql \
-e MYSQL_ROOT_PASSWORD=123 \
--privileged \
-d \
mysql:5.7.25
  1. 修改配置

在/tmp/mysql/conf目录添加一个my.cnf文件,作为mysql的配置文件:

1
2
# 创建文件
touch /tmp/mysql/conf/my.cnf

文件的内容如下:

1
2
3
4
5
[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql
server-id=1000
  1. 重启

配置修改后,必须重启容器:

1
docker restart mysql

导入SQL

接下来,利用Navicat客户端连接MySQL,然后导入课前资料提供的sql文件:

其中包含两张表:

  • tb_item:商品表,包含商品的基本信息
  • tb_item_stock:商品库存表,包含商品的库存信息

之所以将库存分离出来,是因为库存是更新比较频繁的信息,写操作较多。而其他信息修改的频率非常低。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
CREATE TABLE `tb_item` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '商品id',
`title` varchar(264) NOT NULL COMMENT '商品标题',
`name` varchar(128) NOT NULL DEFAULT '' COMMENT '商品名称',
`price` bigint(20) NOT NULL COMMENT '价格(分)',
`image` varchar(200) DEFAULT NULL COMMENT '商品图片',
`category` varchar(200) DEFAULT NULL COMMENT '类目名称',
`brand` varchar(100) DEFAULT NULL COMMENT '品牌名称',
`spec` varchar(200) DEFAULT NULL COMMENT '规格',
`status` int(1) DEFAULT '1' COMMENT '商品状态 1-正常,2-下架,3-删除',
`create_time` datetime DEFAULT NULL COMMENT '创建时间',
`update_time` datetime DEFAULT NULL COMMENT '更新时间',
PRIMARY KEY (`id`) USING BTREE,
KEY `status` (`status`) USING BTREE,
KEY `updated` (`update_time`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=50002 DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT COMMENT='商品表';
1
2
3
4
5
6
CREATE TABLE `tb_item_stock` (
`item_id` bigint(20) NOT NULL COMMENT '商品id,关联tb_item表',
`stock` int(10) NOT NULL DEFAULT '9999' COMMENT '商品库存',
`sold` int(10) NOT NULL DEFAULT '0' COMMENT '商品销量',
PRIMARY KEY (`item_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 ROW_FORMAT=COMPACT;

导入Demo工程

下面导入课前资料提供的工程:

项目结构如图所示:

image-20210809181346450

其中的业务包括:

  • 分页查询商品
  • 新增商品
  • 修改商品
  • 修改库存
  • 删除商品
  • 根据id查询商品
  • 根据id查询库存

业务全部使用mybatis-plus来实现,如有需要请自行修改业务逻辑。

  • 注意修改application.yml文件中配置的mysql地址信息:

image-20210809182350132

需要修改为自己的虚拟机地址信息、还有账号和密码。

修改后,启动服务,访问:http://localhost:8081/item/10001即可查询数据

导入商品查询页面

商品查询是购物页面,与商品管理的页面是分离的。

部署方式如图:

image-20210816111210961

我们需要准备一个反向代理的nginx服务器,如上图红框所示,将静态的商品页面放到nginx目录中。

页面需要的数据通过ajax向服务端(nginx业务集群)查询。

运行nginx服务

这里我已经给大家准备好了nginx反向代理服务器和静态资源。

我们找到课前资料的nginx目录:

将其拷贝到一个非中文目录下,运行这个nginx服务。

  • 运行命令:
1
start nginx.exe

然后访问 http://localhost/item.html?id=10001即可:

反向代理

现在,页面是假数据展示的。我们需要向服务器发送ajax请求,查询商品数据。

打开控制台,可以看到页面有发起ajax查询数据:

image-20210816113816958

而这个请求地址同样是80端口,所以被当前的nginx反向代理了。

查看nginx的conf目录下的nginx.conf文件:

  • 其中的关键配置如下:

image-20210816114416561

其中的192.168.150.101是我的虚拟机IP,也就是我的Nginx业务集群要部署的地方:

image-20210816114554645

完整内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#user nobody;
worker_processes 1;

events {
worker_connections 1024;
}

http {
include mime.types;
default_type application/octet-stream;

sendfile on;
#tcp_nopush on;
keepalive_timeout 65;

upstream nginx-cluster{
server 47.120.32.255:8081;
}
server {
listen 80;
server_name localhost;

location /api {
proxy_pass http://nginx-cluster;
}

location / {
root html;
index index.html index.htm;
}

error_page 500 502 503 504 /50x.html;
location = /50x.html {
root html;
}
}
}

初识Caffeine

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

我们今天会利用Caffeine框架来实现JVM进程缓存。

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine

Caffeine的性能非常好,下图是官方给出的性能对比:

image-20210821081826399

可以看到Caffeine的性能遥遥领先!

缓存使用的基本API:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Test
void testBasicOps() {
// 构建cache对象
Cache<String, String> cache = Caffeine.newBuilder().build();

// 存数据
cache.put("gf", "迪丽热巴");

// 取数据
String gf = cache.getIfPresent("gf");
System.out.println("gf = " + gf);

// 取数据,包含两个参数:
// 参数一:缓存的key
// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
String defaultGF = cache.get("defaultGF", key -> {
// 根据key去数据库查询数据
return "柳岩";
});
System.out.println("defaultGF = " + defaultGF);
}

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。

Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限

    1
    2
    3
    4
    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
    .maximumSize(1) // 设置缓存大小上限为 1
    .build();
  • 基于时间:设置缓存的有效时间

    1
    2
    3
    4
    5
    6
    // 创建缓存对象
    Cache<String, String> cache = Caffeine.newBuilder()
    // 设置缓存有效期为 10 秒,从最后一次写入开始计时
    .expireAfterWrite(Duration.ofSeconds(10))
    .build();

  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

实现JVM进程缓存

需求

利用Caffeine实现下列需求:

  • 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
  • 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
  • 缓存初始大小为100
  • 缓存上限为10000

实现

首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。

在item-service的com.heima.item.config包下定义CaffeineConfig类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
@Configuration
public class CaffeineConfig {

@Bean
public Cache<Long, Item> itemCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}

@Bean
public Cache<Long, ItemStock> stockCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
}

然后,修改item-service中的com.heima.item.web包下的ItemController类,添加缓存逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@RestController
@RequestMapping("item")
public class ItemController {

@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;

@Autowired
private Cache<Long, Item> itemCache;
@Autowired
private Cache<Long, ItemStock> stockCache;

// ...其它略

@GetMapping("/{id}")
public Item findById(@PathVariable("id") Long id) {
return itemCache.get(id, key -> itemService.query()
.ne("status", 3).eq("id", key)
.one()
);
}

@GetMapping("/stock/{id}")
public ItemStock findStockById(@PathVariable("id") Long id) {
return stockCache.get(id, key -> stockService.getById(key));
}
}

Lua语法入门

Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。

初识Lua

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/

image-20210821091437975

Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。

Nginx本身也是C语言开发,因此也允许基于Lua做拓展。

HelloWorld

CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。

  1. 在Linux虚拟机的任意目录下,新建一个hello.lua文件

image-20210821091621308

  1. 添加下面的内容
1
print("Hello World!")  
  1. 运行

image-20210821091638140

变量和循环

学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。

Lua的数据类型

Lua中支持的常见数据类型包括:

image-20210821091835406

另外,Lua提供了type()函数来判断一个变量的数据类型:

image-20210821091904332

声明变量

  • Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:
1
2
3
4
5
6
7
8
-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true
  • Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:
1
2
3
4
-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map = {name='Jack', age=21}
  • Lua中的数组角标是从1开始,访问的时候与Java中类似:
1
2
-- 访问数组,lua数组的角标从1开始
print(arr[1])
  • Lua中的table可以用key来访问:
1
2
3
-- 访问table
print(map['name'])
print(map.name)

循环

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。

  • 遍历数组:
1
2
3
4
5
6
-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
print(index, value)
end
  • 遍历普通table
1
2
3
4
5
6
-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
print(key, value)
end

条件控制、函数

Lua中的条件控制和函数声明与Java类似。

函数

  • 定义函数的语法:
1
2
3
4
function 函数名( argument1, argument2..., argumentn)
-- 函数体
return 返回值
end
  • 例如,定义一个函数,用来打印数组:
1
2
3
4
5
function printArr(arr)
for index, value in ipairs(arr) do
print(value)
end
end

条件控制

类似Java的条件控制,例如if、else语法:

1
2
3
4
5
6
7
if(布尔表达式)
then
--[ 布尔表达式为 true 时执行该语句块 --]
else
--[ 布尔表达式为 false 时执行该语句块 --]
end

  • 与java不同,布尔表达式中的逻辑运算是基于英文单词:

image-20210821092657918

案例

需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息

1
2
3
4
5
6
7
8
function printArr(arr)
if not arr then
print('数组不能为空!')
end
for index, value in ipairs(arr) do
print(value)
end
end

实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。

安装OpenResty

OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑自定义库

官方网站: https://openresty.org/cn/

image-20210821092902946

首先你的Linux虚拟机必须联网

安装OpenResty

  1. 安装开发库

首先要安装OpenResty的依赖开发库,执行命令:

1
yum install -y pcre-devel openssl-devel gcc --skip-broken
  1. 安装OpenResty仓库

你可以在你的 CentOS 系统中添加 openresty 仓库,这样就可以便于未来安装或更新我们的软件包(通过 yum check-update 命令)。运行下面的命令就可以添加我们的仓库:

1
yum-config-manager --add-repo https://openresty.org/package/centos/openresty.repo

如果提示说命令不存在,则运行:

1
yum install -y yum-utils 

然后再重复上面的命令

  1. 安装OpenResty

然后就可以像下面这样安装软件包,比如 openresty

1
yum install -y openresty
  1. 安装opm工具

opm是OpenResty的一个管理工具,可以帮助我们安装一个第三方的Lua模块。

如果你想安装命令行工具 opm,那么可以像下面这样安装 openresty-opm 包:

1
yum install -y openresty-opm
  1. 目录结构

默认情况下,OpenResty安装的目录是:/usr/local/openresty

  • 看到里面的nginx目录了吗,OpenResty就是在Nginx基础上集成了一些Lua模块。
  1. 配置nginx的环境变量

打开配置文件:

1
vi /etc/profile

在最下面加入两行:

1
2
export NGINX_HOME=/usr/local/openresty/nginx
export PATH=${NGINX_HOME}/sbin:$PATH

NGINX_HOME:后面是OpenResty安装目录下的nginx的目录

然后让配置生效:

1
source /etc/profile

启动和运行

1
firewall-cmd --zone=public --add-port=8081/tcp --permanent

OpenResty底层是基于Nginx的,查看OpenResty目录的nginx目录,结构与windows中安装的nginx基本一致:

image-20210811100653291

所以运行方式与nginx基本一致:

1
2
3
4
5
6
# 启动nginx
nginx
# 重新加载配置
nginx -s reload
# 停止
nginx -s stop

nginx的默认配置文件注释太多,影响后续我们的编辑,这里将nginx.conf中的注释部分删除,保留有效部分。

修改/usr/local/openresty/nginx/conf/nginx.conf文件,内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#user  nobody;
worker_processes 1;
error_log logs/error.log;

events {
worker_connections 1024;
}

http {
include mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

server {
listen 8081;
server_name localhost;
location / {
root html;
index index.html index.htm;
}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root html;
}
}
}

在Linux的控制台输入命令以启动nginx:

1
nginx

然后访问页面:http://192.168.150.101:8081,注意ip地址替换为你自己的虚拟机IP:

备注

加载OpenResty的lua模块:

1
2
3
4
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";

common.lua

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http not found, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M

释放Redis连接API:

1
2
3
4
5
6
7
8
9
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end

读取Redis数据的API:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end

开启共享词典:

1
2
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m

OpenResty快速入门

我们希望达到的多级缓存架构如图:

yeVDlwtfMx

其中:

  • windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群

  • OpenResty集群用来编写多级缓存业务

反向代理流程

现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。

这个请求如下:

image-20210821093144700

请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:

image-20210821094447709

我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。

但是这次,我们先在OpenResty接收请求,返回假的商品数据。

OpenResty监听请求

OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:

  1. 添加对OpenResty的Lua模块的加载

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在其中的http下面,添加下面代码:

1
2
3
4
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
  1. 监听/api/item路径

修改/usr/local/openresty/nginx/conf/nginx.conf文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:

1
2
3
4
5
6
location  /api/item {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}

这个监听,就类似于SpringMVC中的@GetMapping("/api/item")做路径映射。

content_by_lua_file lua/item.lua则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。

编写item.lua

  1. /usr/loca/openresty/nginx目录创建文件夹:lua

image-20210821100755080

  1. /usr/loca/openresty/nginx/lua文件夹下,新建文件:item.lua

image-20210821100801756

  1. 编写item.lua,返回假数据

item.lua中,利用ngx.say()函数返回数据到Response中

1
ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
  1. 重新加载配置
1
nginx -s reload

刷新商品页面:http://localhost/item.html?id=1001,即可看到效果:

image-20210821101217089

请求参数处理

上一节中,我们在OpenResty接收前端请求,但是返回的是假数据。

要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。

那么如何获取前端传递的商品参数呢?

获取参数的API

OpenResty中提供了一些API用来获取不同类型的前端请求参数:

image-20210821101433528

获取参数并返回

在前端发起的ajax请求如图:

image-20210821101721649

可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID

  1. 获取商品id

修改/usr/loca/openresty/nginx/nginx.conf文件中监听/api/item的代码,利用正则表达式获取ID:

1
2
3
4
5
6
location ~ /api/item/(\d+) {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
  1. 拼接ID并返回

修改/usr/loca/openresty/nginx/lua/item.lua文件,获取id并拼接到结果中返回:

1
2
3
4
-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
  1. 重新加载并测试

运行命令以重新加载OpenResty配置:

1
nginx -s reload

刷新页面可以看到结果中已经带上了ID:

image-20210821102235467

查询Tomcat

拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:

image-20210821102610167

需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。

image-20210821102959829

发送http请求的API

nginx提供了内部API用以发送http请求:

1
2
3
4
local resp = ngx.location.capture("/path",{
method = ngx.HTTP_GET, -- 请求方式
args = {a=1,b=2}, -- get方式传参数
})

返回的响应内容包括:

  • resp.status:响应状态码
  • resp.header:响应头,是一个table
  • resp.body:响应体,就是响应数据

注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。

但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:

1
2
3
4
location /path {
# 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
proxy_pass http://192.168.150.1:8081;
}

原理如图:

image-20210821104149061

封装http工具

下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。

  1. 添加反向代理,到windows的Java服务

因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。

修改 /usr/local/openresty/nginx/conf/nginx.conf文件,添加一个location:

1
2
3
location /item {
proxy_pass http://192.168.150.1:8081;
}

注意:使用云服务器

image-20230409220520991

image-20230409220556772

以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。

  1. 封装工具类

之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:

image-20210821104857413

所以,自定义的http工具也需要放到这个目录下。

/usr/local/openresty/lualib目录下,新建一个common.lua文件:

1
vi /usr/local/openresty/lualib/common.lua

内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M

这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。

使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。

  1. 实现商品查询

最后,我们修改/usr/local/openresty/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:

1
2
3
4
5
6
7
8
9
10
-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:

image-20210821110441222

这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。

CJSON工具类

OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。

官方地址: https://github.com/openresty/lua-cjson/

  1. 引入cjson模块:
1
local cjson = require "cjson"
  1. 序列化:
1
2
3
4
5
6
local obj = {
name = 'jack',
age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)
  1. 反序列化:
1
2
3
4
local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)

实现Tomcat查询

下面,我们修改之前的item.lua中的业务,添加json处理功能:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')

-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(itemStockJSON)

-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

基于ID负载均衡

刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:

image-20210821111023255

因此,OpenResty需要对tomcat集群做负载均衡。

而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:

  • 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
  • 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库

你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。

  • 如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。

  • 也就是说,我们需要根据商品id做负载均衡,而不是轮询。

  1. 原理

nginx提供了基于请求路径做负载均衡的算法:

  • nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。

例如:

  • 我们的请求路径是 /item/10001
  • tomcat总数为2台(8081、8082)
  • 对请求路径/item/1001做hash运算求余的结果为1
  • 则访问第一个tomcat服务,也就是8081

只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。

  1. 实现

修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。

首先,定义tomcat集群,并设置基于路径做负载均衡:

1
2
3
4
5
upstream tomcat-cluster {
hash $request_uri;
server 192.168.150.1:8081;
server 192.168.150.1:8082;
}

然后,修改对tomcat服务的反向代理,目标指向tomcat集群:

1
2
3
location /item {
proxy_pass http://tomcat-cluster;
}

重新加载OpenResty

1
nginx -s reload
  1. 测试

启动两台tomcat服务:

image-20210821112420464

同时启动:

清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:

Redis缓存预热

Redis缓存会面临冷启动问题:

  • 冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。

  • 缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。

我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。

  1. 利用Docker安装Redis
1
docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes
  1. 在item-service服务中引入Redis依赖
1
2
3
4
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
  1. 配置Redis地址
1
2
3
spring:
redis:
host: 192.168.150.101
  1. 编写初始化类

缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。

  • 这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
package com.heima.item.config;

@Component
public class RedisHandler implements InitializingBean {

@Autowired
private StringRedisTemplate redisTemplate;

@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;

private static final ObjectMapper MAPPER = new ObjectMapper();

@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}

// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
}

查询Redis缓存

现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:

image-20210821113340111

当请求进入OpenResty之后:

  • 优先查询Redis缓存
  • 如果Redis缓存未命中,再查询Tomcat

封装Redis工具

OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。

修改/usr/local/openresty/lualib/common.lua文件:

  1. 引入Redis模块,并初始化Redis对象
1
2
3
4
5
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)
  1. 封装函数,用来释放Redis连接,其实是放入连接池
1
2
3
4
5
6
7
8
9
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
  1. 封装函数,根据key查询Redis数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
  1. 导出
1
2
3
4
5
6
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M

完整的common.lua:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)

-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end

-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end

-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M

实现Redis查询

接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。

查询逻辑是:

  • 根据id查询Redis
  • 如果查询失败则继续查询Tomcat
  • 将查询结果返回
  1. 修改/usr/local/openresty/lua/item.lua文件,添加一个查询函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
  1. 而后修改商品查询、库存查询的业务:

image-20210821114528954

  1. 完整的item.lua代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')

-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

Nginx本地缓存

现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:

image-20210821114742950

本地缓存API

OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。

  1. 开启共享字典,在nginx.conf的http下添加配置:
1
2
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
  1. 操作共享字典:
1
2
3
4
5
6
-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')

实现本地缓存查询

  1. 修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
  1. 修改item.lua中查询商品和库存的业务,实现最新的read_data函数:

image-20210821115108528

其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。

  • 这里给商品基本信息设置超时时间为30分钟,库存为1分钟。

  • 因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。

  1. 完整的item.lua文件:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache

-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end

-- 获取路径参数
local id = ngx.var[1]

-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)

-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold

-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))

缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

异步通知:修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

  1. 基于MQ的异步通知:

image-20210821115552327

解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新

依然有少量的代码侵入。

  1. 基于Canal的通知

image-20210821115719363

解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

代码零侵入

安装Canal

认识Canal

Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。

image-20210821115914748

  • MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

image-20210821115948395

下面我们就开启mysql的主从同步机制,让Canal来模拟salve

开启MySQL主从

Canal是基于MySQL的主从同步功能,因此必须先开启MySQL的主从功能才可以。

这里以之前用Docker运行的mysql为例:

开启binlog

  1. 打开mysql容器挂载的日志文件,我的在/tmp/mysql/conf目录:

image-20210813153241537

  1. 修改文件:
1
vi /tmp/mysql/conf/my.cnf
  1. 添加内容:
1
2
log-bin=/var/lib/mysql/mysql-bin
binlog-do-db=heima
  1. 配置解读:
  • log-bin=/var/lib/mysql/mysql-bin:设置binary log文件的存放地址和文件名,叫做mysql-bin
  • binlog-do-db=heima:指定对哪个database记录binary log events,这里记录heima这个库
  1. 最终效果:
1
2
3
4
5
6
7
[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql
server-id=1000
log-bin=/var/lib/mysql/mysql-bin
binlog-do-db=heima

设置用户权限

  1. 接下来添加一个仅用于数据同步的账户,出于安全考虑,这里仅提供对heima这个库的操作权限。
1
2
3
create user canal@'%' IDENTIFIED by 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT,SUPER ON *.* TO 'canal'@'%' identified by 'canal';
FLUSH PRIVILEGES;
  1. 重启mysql容器即可
1
docker restart mysql
  1. 测试设置是否成功:在mysql控制台,或者Navicat中,输入命令:
1
show master status;

image-20200327094735948

创建网络

我们需要创建一个网络,将MySQL、Canal、MQ放到同一个Docker网络中:

1
docker network create heima

让mysql加入这个网络:

1
docker network connect heima mysql

安装Canal

课前资料中提供了canal的镜像压缩包:

  • 大家可以上传到虚拟机,然后通过命令导入:
1
docker load -i canal.tar
  • 然后运行命令创建Canal容器:
1
2
3
4
5
6
7
8
9
10
11
docker run -p 11111:11111 --name canal \
-e canal.destinations=heima \
-e canal.instance.master.address=mysql:3306 \
-e canal.instance.dbUsername=canal \
-e canal.instance.dbPassword=canal \
-e canal.instance.connectionCharset=UTF-8 \
-e canal.instance.tsdb.enable=true \
-e canal.instance.gtidon=false \
-e canal.instance.filter.regex=heima\\..* \
--network heima \
-d canal/canal-server:v1.1.5

说明:

  • -p 11111:11111:这是canal的默认监听端口
  • -e canal.instance.master.address=mysql:3306:数据库地址和端口,如果不知道mysql容器地址,可以通过docker inspect 容器id来查看
  • -e canal.instance.dbUsername=canal:数据库用户名
  • -e canal.instance.dbPassword=canal :数据库密码
  • -e canal.instance.filter.regex=:要监听的表名称

表名称监听支持的语法:

1
2
3
4
5
6
7
8
mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\)
常见例子:
1. 所有表:.* or .*\\..*
2. canal schema下所有表: canal\\..*
3. canal下的以canal打头的表:canal\\.canal.*
4. canal schema下的一张表:canal.test1
5. 多个规则组合使用然后以逗号隔开:canal\\..*,mysql.test1,mysql.test2

监听Canal

Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。

image-20210821120049024

我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。

引入依赖:

1
2
3
4
5
<dependency>
<groupId>top.javatool</groupId>
<artifactId>canal-spring-boot-starter</artifactId>
<version>1.2.1-RELEASE</version>
</dependency>

编写配置:

1
2
3
canal:
destination: heima # canal的集群名字,要与安装canal时设置的名称一致
server: 192.168.150.101:11111 # canal服务地址

修改Item实体类

通过@Id、@Column、等注解完成Item与数据库表字段的映射:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package com.heima.item.pojo;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;

import javax.persistence.Column;
import java.util.Date;

@Data
@TableName("tb_item")
public class Item {
@TableId(type = IdType.AUTO)
@Id
private Long id;//商品id
@Column(name = "name")
private String name;//商品名称
private String title;//商品标题
private Long price;//价格(分)
private String image;//商品图片
private String category;//分类名称
private String brand;//品牌名称
private String spec;//规格
private Integer status;//商品状态 1-正常,2-下架
private Date createTime;//创建时间
private Date updateTime;//更新时间
@TableField(exist = false)
@Transient
private Integer stock;
@TableField(exist = false)
@Transient
private Integer sold;
}

编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
package com.heima.item.canal;

@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {

@Autowired
private RedisHandler redisHandler;
@Autowired
private Cache<Long, Item> itemCache;

@Override
public void insert(Item item) {
// 写数据到JVM进程缓存
itemCache.put(item.getId(), item);
// 写数据到redis
redisHandler.saveItem(item);
}

@Override
public void update(Item before, Item after) {
// 写数据到JVM进程缓存
itemCache.put(after.getId(), after);
// 写数据到redis
redisHandler.saveItem(after);
}

@Override
public void delete(Item item) {
// 删除数据到JVM进程缓存
itemCache.invalidate(item.getId());
// 删除数据到redis
redisHandler.deleteItemById(item.getId());
}
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
package com.heima.item.config;

@Component
public class RedisHandler implements InitializingBean {

@Autowired
private StringRedisTemplate redisTemplate;

@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;

private static final ObjectMapper MAPPER = new ObjectMapper();

@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}

// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}

public void saveItem(Item item) {
try {
String json = MAPPER.writeValueAsString(item);
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
} catch (JsonProcessingException e) {
throw new RuntimeException(e);
}
}

public void deleteItemById(Long id) {
redisTemplate.delete("item:id:" + id);
}
}