多级缓存
多级缓存
什么是多级缓存
传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:
存在下面的问题:
请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈
Redis缓存失效时,会对数据库产生冲击
多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:
- 浏览器访问静态资源时,优先读取浏览器本地缓存
- 访问非静态资源(ajax查询数据)时,访问服务端
- 请求到达Nginx后,优先读取Nginx本地缓存
- 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
- 如果Redis查询未命中,则查询Tomcat
- 请求进入Tomcat后,优先查询JVM进程缓存
- 如果JVM进程缓存未命中,则查询数据库
在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了。
因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:
另外,我们的Tomcat服务将来也会部署为集群模式:
可见,多级缓存的关键有两个:
一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询
另一个就是在Tomcat中实现JVM进程缓存
其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。
这也是今天课程的难点和重点。
JVM进程缓存
为了演示多级缓存的案例,我们先准备一个商品查询的业务。
导入案例
安装MySQL
后期做数据同步需要用到MySQL的主从功能,所以需要大家在虚拟机中,利用Docker来运行一个MySQL容器。
- 准备目录
为了方便后期配置MySQL,我们先准备两个目录,用于挂载容器的数据和配置文件目录:
1 | # 进入/tmp目录 |
- 运行命令
进入mysql目录后,执行下面的Docker命令:
1 | docker run \ |
- 修改配置
在/tmp/mysql/conf目录添加一个my.cnf文件,作为mysql的配置文件:
1 | # 创建文件 |
文件的内容如下:
1 | [mysqld] |
- 重启
配置修改后,必须重启容器:
1 | docker restart mysql |
导入SQL
接下来,利用Navicat客户端连接MySQL,然后导入课前资料提供的sql文件:
其中包含两张表:
- tb_item:商品表,包含商品的基本信息
- tb_item_stock:商品库存表,包含商品的库存信息
之所以将库存分离出来,是因为库存是更新比较频繁的信息,写操作较多。而其他信息修改的频率非常低。
1 | CREATE TABLE `tb_item` ( |
1 | CREATE TABLE `tb_item_stock` ( |
导入Demo工程
下面导入课前资料提供的工程:
项目结构如图所示:
其中的业务包括:
- 分页查询商品
- 新增商品
- 修改商品
- 修改库存
- 删除商品
- 根据id查询商品
- 根据id查询库存
业务全部使用mybatis-plus来实现,如有需要请自行修改业务逻辑。
- 注意修改application.yml文件中配置的mysql地址信息:
需要修改为自己的虚拟机地址信息、还有账号和密码。
修改后,启动服务,访问:http://localhost:8081/item/10001即可查询数据
导入商品查询页面
商品查询是购物页面,与商品管理的页面是分离的。
部署方式如图:
我们需要准备一个反向代理的nginx服务器,如上图红框所示,将静态的商品页面放到nginx目录中。
页面需要的数据通过ajax向服务端(nginx业务集群)查询。
运行nginx服务
这里我已经给大家准备好了nginx反向代理服务器和静态资源。
我们找到课前资料的nginx目录:
将其拷贝到一个非中文目录下,运行这个nginx服务。
- 运行命令:
1 | start nginx.exe |
然后访问 http://localhost/item.html?id=10001即可:
反向代理
现在,页面是假数据展示的。我们需要向服务器发送ajax请求,查询商品数据。
打开控制台,可以看到页面有发起ajax查询数据:
而这个请求地址同样是80端口,所以被当前的nginx反向代理了。
查看nginx的conf目录下的nginx.conf文件:
- 其中的关键配置如下:
其中的192.168.150.101是我的虚拟机IP,也就是我的Nginx业务集群要部署的地方:
完整内容如下:
1 |
|
初识Caffeine
缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:
- 分布式缓存,例如Redis:
- 优点:存储容量更大、可靠性更好、可以在集群间共享
- 缺点:访问缓存有网络开销
- 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
- 进程本地缓存,例如HashMap、GuavaCache:
- 优点:读取本地内存,没有网络开销,速度更快
- 缺点:存储容量有限、可靠性较低、无法共享
- 场景:性能要求较高,缓存数据量较小
我们今天会利用Caffeine框架来实现JVM进程缓存。
Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine
Caffeine的性能非常好,下图是官方给出的性能对比:
可以看到Caffeine的性能遥遥领先!
缓存使用的基本API:
1 |
|
Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。
Caffeine提供了三种缓存驱逐策略:
基于容量:设置缓存的数量上限
1
2
3
4// 创建缓存对象
Cache<String, String> cache = Caffeine.newBuilder()
.maximumSize(1) // 设置缓存大小上限为 1
.build();基于时间:设置缓存的有效时间
1
2
3
4
5
6// 创建缓存对象
Cache<String, String> cache = Caffeine.newBuilder()
// 设置缓存有效期为 10 秒,从最后一次写入开始计时
.expireAfterWrite(Duration.ofSeconds(10))
.build();基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。
注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。
实现JVM进程缓存
需求
利用Caffeine实现下列需求:
- 给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
- 给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
- 缓存初始大小为100
- 缓存上限为10000
实现
首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。
在item-service的com.heima.item.config
包下定义CaffeineConfig
类:
1 |
|
然后,修改item-service中的com.heima.item.web
包下的ItemController类,添加缓存逻辑:
1 |
|
Lua语法入门
Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。
初识Lua
Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/
Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。
Nginx本身也是C语言开发,因此也允许基于Lua做拓展。
HelloWorld
CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。
- 在Linux虚拟机的任意目录下,新建一个hello.lua文件
- 添加下面的内容
1 | print("Hello World!") |
- 运行
变量和循环
学习任何语言必然离不开变量,而变量的声明必须先知道数据的类型。
Lua的数据类型
Lua中支持的常见数据类型包括:
另外,Lua提供了type()函数来判断一个变量的数据类型:
声明变量
- Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:
1 | -- 声明字符串,可以用单引号或双引号, |
- Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:
1 | -- 声明数组 ,key为角标的 table |
- Lua中的数组角标是从1开始,访问的时候与Java中类似:
1 | -- 访问数组,lua数组的角标从1开始 |
- Lua中的table可以用key来访问:
1 | -- 访问table |
循环
对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。
- 遍历数组:
1 | -- 声明数组 key为索引的 table |
- 遍历普通table
1 | -- 声明map,也就是table |
条件控制、函数
Lua中的条件控制和函数声明与Java类似。
函数
- 定义函数的语法:
1 | function 函数名( argument1, argument2..., argumentn) |
- 例如,定义一个函数,用来打印数组:
1 | function printArr(arr) |
条件控制
类似Java的条件控制,例如if、else语法:
1 | if(布尔表达式) |
- 与java不同,布尔表达式中的逻辑运算是基于英文单词:
案例
需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息
1 | function printArr(arr) |
实现多级缓存
多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。
安装OpenResty
OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:
- 具备Nginx的完整功能
- 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
- 允许使用Lua自定义业务逻辑、自定义库
官方网站: https://openresty.org/cn/
首先你的Linux虚拟机必须联网
安装OpenResty
- 安装开发库
首先要安装OpenResty的依赖开发库,执行命令:
1 | yum install -y pcre-devel openssl-devel gcc --skip-broken |
- 安装OpenResty仓库
你可以在你的 CentOS 系统中添加 openresty
仓库,这样就可以便于未来安装或更新我们的软件包(通过 yum check-update
命令)。运行下面的命令就可以添加我们的仓库:
1 | yum-config-manager --add-repo https://openresty.org/package/centos/openresty.repo |
如果提示说命令不存在,则运行:
1 | yum install -y yum-utils |
然后再重复上面的命令
- 安装OpenResty
然后就可以像下面这样安装软件包,比如 openresty
:
1 | yum install -y openresty |
- 安装opm工具
opm是OpenResty的一个管理工具,可以帮助我们安装一个第三方的Lua模块。
如果你想安装命令行工具 opm
,那么可以像下面这样安装 openresty-opm
包:
1 | yum install -y openresty-opm |
- 目录结构
默认情况下,OpenResty安装的目录是:/usr/local/openresty
- 看到里面的nginx目录了吗,OpenResty就是在Nginx基础上集成了一些Lua模块。
- 配置nginx的环境变量
打开配置文件:
1 | vi /etc/profile |
在最下面加入两行:
1 | export NGINX_HOME=/usr/local/openresty/nginx |
NGINX_HOME:后面是OpenResty安装目录下的nginx的目录
然后让配置生效:
1 | source /etc/profile |
启动和运行
1 | firewall-cmd --zone=public --add-port=8081/tcp --permanent |
OpenResty底层是基于Nginx的,查看OpenResty目录的nginx目录,结构与windows中安装的nginx基本一致:
所以运行方式与nginx基本一致:
1 | # 启动nginx |
nginx的默认配置文件注释太多,影响后续我们的编辑,这里将nginx.conf中的注释部分删除,保留有效部分。
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,内容如下:
1 | #user nobody; |
在Linux的控制台输入命令以启动nginx:
1 | nginx |
然后访问页面:http://192.168.150.101:8081,注意ip地址替换为你自己的虚拟机IP:
备注
加载OpenResty的lua模块:
1 | #lua 模块 |
common.lua
1 | -- 封装函数,发送http请求,并解析响应 |
释放Redis连接API:
1 | -- 关闭redis连接的工具方法,其实是放入连接池 |
读取Redis数据的API:
1 | -- 查询redis的方法 ip和port是redis地址,key是查询的key |
开启共享词典:
1 | # 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m |
OpenResty快速入门
我们希望达到的多级缓存架构如图:
其中:
windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群
OpenResty集群用来编写多级缓存业务
反向代理流程
现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。
这个请求如下:
请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:
我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。
但是这次,我们先在OpenResty接收请求,返回假的商品数据。
OpenResty监听请求
OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:
- 添加对OpenResty的Lua模块的加载
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在其中的http下面,添加下面代码:
1 | #lua 模块 |
- 监听/api/item路径
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:
1 | location /api/item { |
这个监听,就类似于SpringMVC中的@GetMapping("/api/item")
做路径映射。
而content_by_lua_file lua/item.lua
则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。
编写item.lua
- 在
/usr/loca/openresty/nginx
目录创建文件夹:lua
- 在
/usr/loca/openresty/nginx/lua
文件夹下,新建文件:item.lua
- 编写item.lua,返回假数据
item.lua中,利用ngx.say()函数返回数据到Response中
1 | ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}') |
- 重新加载配置
1 | nginx -s reload |
刷新商品页面:http://localhost/item.html?id=1001,即可看到效果:
请求参数处理
上一节中,我们在OpenResty接收前端请求,但是返回的是假数据。
要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。
那么如何获取前端传递的商品参数呢?
获取参数的API
OpenResty中提供了一些API用来获取不同类型的前端请求参数:
获取参数并返回
在前端发起的ajax请求如图:
可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID
- 获取商品id
修改/usr/loca/openresty/nginx/nginx.conf
文件中监听/api/item的代码,利用正则表达式获取ID:
1 | location ~ /api/item/(\d+) { |
- 拼接ID并返回
修改/usr/loca/openresty/nginx/lua/item.lua
文件,获取id并拼接到结果中返回:
1 | -- 获取商品id |
- 重新加载并测试
运行命令以重新加载OpenResty配置:
1 | nginx -s reload |
刷新页面可以看到结果中已经带上了ID:
查询Tomcat
拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:
需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。
发送http请求的API
nginx提供了内部API用以发送http请求:
1 | local resp = ngx.location.capture("/path",{ |
返回的响应内容包括:
- resp.status:响应状态码
- resp.header:响应头,是一个table
- resp.body:响应体,就是响应数据
注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。
但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:
1 | location /path { |
原理如图:
封装http工具
下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。
- 添加反向代理,到windows的Java服务
因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。
修改 /usr/local/openresty/nginx/conf/nginx.conf
文件,添加一个location:
1 | location /item { |
注意:使用云服务器
- 可以通过内网穿透工具cpolar访问本机
- 官网:cpolar - 安全的内网穿透工具
- 下载启动,再使用注册账号登录即可
以后,只要我们调用ngx.location.capture("/item")
,就一定能发送请求到windows的tomcat服务。
- 封装工具类
之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:
所以,自定义的http工具也需要放到这个目录下。
在/usr/local/openresty/lualib
目录下,新建一个common.lua文件:
1 | vi /usr/local/openresty/lualib/common.lua |
内容如下:
1 | -- 封装函数,发送http请求,并解析响应 |
这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。
使用的时候,可以利用require('common')
来导入该函数库,这里的common是函数库的文件名。
- 实现商品查询
最后,我们修改/usr/local/openresty/lua/item.lua
文件,利用刚刚封装的函数库实现对tomcat的查询:
1 | -- 引入自定义common工具模块,返回值是common中返回的 _M |
这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:
这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。
CJSON工具类
OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。
官方地址: https://github.com/openresty/lua-cjson/
- 引入cjson模块:
1 | local cjson = require "cjson" |
- 序列化:
1 | local obj = { |
- 反序列化:
1 | local json = '{"name": "jack", "age": 21}' |
实现Tomcat查询
下面,我们修改之前的item.lua中的业务,添加json处理功能:
1 | -- 导入common函数库 |
基于ID负载均衡
刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:
因此,OpenResty需要对tomcat集群做负载均衡。
而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:
- 第一次会访问8081端口的tomcat服务,在该服务内部就形成了JVM进程缓存
- 第二次会访问8082端口的tomcat服务,该服务内部没有JVM缓存(因为JVM缓存无法共享),会查询数据库
- …
你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。
如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。
也就是说,我们需要根据商品id做负载均衡,而不是轮询。
- 原理
nginx提供了基于请求路径做负载均衡的算法:
- nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。
例如:
- 我们的请求路径是 /item/10001
- tomcat总数为2台(8081、8082)
- 对请求路径/item/1001做hash运算求余的结果为1
- 则访问第一个tomcat服务,也就是8081
只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。
- 实现
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,实现基于ID做负载均衡。
首先,定义tomcat集群,并设置基于路径做负载均衡:
1 | upstream tomcat-cluster { |
然后,修改对tomcat服务的反向代理,目标指向tomcat集群:
1 | location /item { |
重新加载OpenResty
1 | nginx -s reload |
- 测试
启动两台tomcat服务:
同时启动:
清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:
Redis缓存预热
Redis缓存会面临冷启动问题:
冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。
缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。
我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。
- 利用Docker安装Redis
1 | docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes |
- 在item-service服务中引入Redis依赖
1 | <dependency> |
- 配置Redis地址
1 | spring: |
- 编写初始化类
缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。
- 这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。
1 | package com.heima.item.config; |
查询Redis缓存
现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:
当请求进入OpenResty之后:
- 优先查询Redis缓存
- 如果Redis缓存未命中,再查询Tomcat
封装Redis工具
OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。
修改/usr/local/openresty/lualib/common.lua
文件:
- 引入Redis模块,并初始化Redis对象
1 | -- 导入redis |
- 封装函数,用来释放Redis连接,其实是放入连接池
1 | -- 关闭redis连接的工具方法,其实是放入连接池 |
- 封装函数,根据key查询Redis数据
1 | -- 查询redis的方法 ip和port是redis地址,key是查询的key |
- 导出
1 | -- 将方法导出 |
完整的common.lua:
1 | -- 导入redis |
实现Redis查询
接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。
查询逻辑是:
- 根据id查询Redis
- 如果查询失败则继续查询Tomcat
- 将查询结果返回
- 修改
/usr/local/openresty/lua/item.lua
文件,添加一个查询函数:
1 | -- 导入common函数库 |
- 而后修改商品查询、库存查询的业务:
- 完整的item.lua代码:
1 | -- 导入common函数库 |
Nginx本地缓存
现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
本地缓存API
OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。
- 开启共享字典,在nginx.conf的http下添加配置:
1 | # 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m |
- 操作共享字典:
1 | -- 获取本地缓存对象 |
实现本地缓存查询
- 修改
/usr/local/openresty/lua/item.lua
文件,修改read_data查询函数,添加本地缓存逻辑:
1 | -- 导入共享词典,本地缓存 |
- 修改item.lua中查询商品和库存的业务,实现最新的read_data函数:
其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。
这里给商品基本信息设置超时时间为30分钟,库存为1分钟。
因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。
- 完整的item.lua文件:
1 | -- 导入common函数库 |
缓存同步
大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。
所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。
数据同步策略
缓存数据同步的常见方式有三种:
设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新
- 优势:简单、方便
- 缺点:时效性差,缓存过期之前可能不一致
- 场景:更新频率较低,时效性要求低的业务
同步双写:在修改数据库的同时,直接修改缓存
- 优势:时效性强,缓存与数据库强一致
- 缺点:有代码侵入,耦合度高;
- 场景:对一致性、时效性要求较高的缓存数据
异步通知:修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据
- 优势:低耦合,可以同时通知多个缓存服务
- 缺点:时效性一般,可能存在中间不一致状态
- 场景:时效性要求一般,有多个服务需要同步
而异步实现又可以基于MQ或者Canal来实现:
- 基于MQ的异步通知:
解读:
- 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
- 缓存服务监听MQ消息,然后完成对缓存的更新
依然有少量的代码侵入。
- 基于Canal的通知
解读:
- 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
- Canal监听MySQL变化,当发现变化后,立即通知缓存服务
- 缓存服务接收到canal通知,更新缓存
代码零侵入
安装Canal
认识Canal
Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。
GitHub的地址:https://github.com/alibaba/canal
Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:
- MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
- MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
- MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据
而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。
下面我们就开启mysql的主从同步机制,让Canal来模拟salve
开启MySQL主从
Canal是基于MySQL的主从同步功能,因此必须先开启MySQL的主从功能才可以。
这里以之前用Docker运行的mysql为例:
开启binlog
- 打开mysql容器挂载的日志文件,我的在
/tmp/mysql/conf
目录:
- 修改文件:
1 | vi /tmp/mysql/conf/my.cnf |
- 添加内容:
1 | log-bin=/var/lib/mysql/mysql-bin |
- 配置解读:
log-bin=/var/lib/mysql/mysql-bin
:设置binary log文件的存放地址和文件名,叫做mysql-binbinlog-do-db=heima
:指定对哪个database记录binary log events,这里记录heima这个库
- 最终效果:
1 | [mysqld] |
设置用户权限
- 接下来添加一个仅用于数据同步的账户,出于安全考虑,这里仅提供对heima这个库的操作权限。
1 | create user canal@'%' IDENTIFIED by 'canal'; |
- 重启mysql容器即可
1 | docker restart mysql |
- 测试设置是否成功:在mysql控制台,或者Navicat中,输入命令:
1 | show master status; |
创建网络
我们需要创建一个网络,将MySQL、Canal、MQ放到同一个Docker网络中:
1 | docker network create heima |
让mysql加入这个网络:
1 | docker network connect heima mysql |
安装Canal
课前资料中提供了canal的镜像压缩包:
- 大家可以上传到虚拟机,然后通过命令导入:
1 | docker load -i canal.tar |
- 然后运行命令创建Canal容器:
1 | docker run -p 11111:11111 --name canal \ |
说明:
-p 11111:11111
:这是canal的默认监听端口-e canal.instance.master.address=mysql:3306
:数据库地址和端口,如果不知道mysql容器地址,可以通过docker inspect 容器id
来查看-e canal.instance.dbUsername=canal
:数据库用户名-e canal.instance.dbPassword=canal
:数据库密码-e canal.instance.filter.regex=
:要监听的表名称
表名称监听支持的语法:
1 | mysql 数据解析关注的表,Perl正则表达式. |
监听Canal
Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。
我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。
不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client
与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。
引入依赖:
1 | <dependency> |
编写配置:
1 | canal: |
修改Item实体类
通过@Id、@Column、等注解完成Item与数据库表字段的映射:
1 | package com.heima.item.pojo; |
编写监听器
通过实现EntryHandler<T>
接口编写监听器,监听Canal消息。注意两点:
- 实现类通过
@CanalTable("tb_item")
指定监听的表信息 - EntryHandler的泛型是与表对应的实体类
1 | package com.heima.item.canal; |
在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:
1 | package com.heima.item.config; |