Redis实战篇1
开篇导读
亲爱的小伙伴们大家好,马上咱们就开始实战篇的内容了,相信通过本章的学习,小伙伴们就能理解各种redis的使用啦,接下来咱们来一起看看实战篇我们要学习一些什么样的内容
- 短信登录
这一块我们会使用redis共享session来实现
- 商户查询缓存
通过本章节,我们会理解缓存击穿,缓存穿透,缓存雪崩等问题,让小伙伴的对于这些概念的理解不仅仅是停留在概念上,更是能在代码中看到对应的内容
- 优惠卷秒杀
通过本章节,我们可以学会Redis的计数器功能, 结合Lua完成高性能的redis操作,同时学会Redis分布式锁的原理,包括Redis的三种消息队列
- 附近的商户
我们利用Redis的GEOHash来完成对于地理坐标的操作
- UV统计
主要是使用Redis来完成统计功能
- 用户签到
使用Redis的BitMap数据统计功能
- 好友关注
基于Set集合的关注、取消关注,共同关注等等功能,这一块知识咱们之前就讲过,这次我们在项目中来使用一下
- 打人探店
基于List来完成点赞列表的操作,同时基于SortedSet来完成点赞的排行榜功能
以上这些内容咱们统统都会给小伙伴们讲解清楚,让大家充分理解如何使用Redis
短信登录
导入黑马点评项目
导入SQL
有关当前模型
手机或者 app 端发起请求,请求我们的nginx服务器,nginx基于七层模型走的事HTTP协议,可以实现基于Lua直接绕开tomcat访问redis,也可以作为静态资源服务器,轻松扛下上万并发, 负载均衡到下游tomcat服务器,打散流量,
我们都知道一台4核8G的tomcat,在优化和处理简单业务的加持下,大不了就处理1000左右的并发, 经过nginx的负载均衡分流后,利用集群支撑起整个项目,同时nginx在部署了前端项目后,更是可以做到动静分离,进一步降低tomcat服务的压力,这些功能都得靠nginx起作用,所以nginx是整个项目中重要的一环。
在tomcat支撑起并发流量后,我们如果让tomcat直接去访问Mysql,根据经验Mysql企业级服务器只要上点并发,一般是16或32 核心cpu,32 或64G内存,像企业级mysql加上固态硬盘能够支撑的并发,大概就是4000起~7000左右,上万并发, 瞬间就会让Mysql服务器的cpu,硬盘全部打满,容易崩溃,
所以我们在高并发场景下,会选择使用mysql集群,同时为了进一步降低Mysql的压力,同时增加访问的性能,我们也会加入Redis,同时使用Redis集群使得Redis对外提供更好的服务。
导入后端项目
在资料中提供了一个项目源码:
导入前端工程
运行前端项目
基于Session实现登录流程
发送验证码:
用户在提交手机号后,会校验手机号是否合法,如果不合法,则要求用户重新输入手机号
如果手机号合法,后台此时生成对应的验证码,同时将验证码进行保存,然后再通过短信的方式将验证码发送给用户
短信验证码登录、注册:
用户将验证码和手机号进行输入,后台从session中拿到当前验证码,然后和用户输入的验证码进行校验,如果不一致,则无法通过校验,如果一致,则后台根据手机号查询用户,如果用户不存在,则为用户创建账号信息,保存到数据库,无论是否存在,都会将用户信息保存到session中,方便后续获得当前登录信息
校验登录状态:
用户在请求时候,会从cookie中携带者JsessionId到后台,后台通过JsessionId从session中拿到用户信息,如果没有session信息,则进行拦截,如果有session信息,则将用户信息保存到threadLocal中,并且放行
ThreadLocal
是一个线程域对象
可以把用户数据保存到线程内部,即线程会创建一个map对象保存数据
- 这样每一个用户都有自己独立的空间,用户之间不相互干扰(线程干扰)
- 后续需要用户信息即可从中去除
实现发送短信验证码功能
页面流程
具体代码如下
贴心小提示:
具体逻辑上文已经分析,我们仅仅只需要按照提示的逻辑写出代码即可。
- 发送验证码
1 |
|
- 登录
1 |
|
实现登录拦截功能
温馨小贴士:tomcat的运行原理
当用户发起请求时,会访问我们像tomcat注册的端口,任何程序想要运行,都需要有一个线程对当前端口号进行监听,tomcat也不例外,当监听线程知道用户想要和tomcat连接连接时,那会由监听线程创建socket连接,socket都是成对出现的,用户通过socket像互相传递数据,当tomcat端的socket接受到数据后,此时监听线程会从tomcat的线程池中取出一个线程执行用户请求,
在我们的服务部署到tomcat后,线程会找到用户想要访问的工程,然后用这个线程转发到工程中的controller,service,dao中,并且访问对应的DB,在用户执行完请求后,再统一返回,再找到tomcat端的socket,再将数据写回到用户端的socket,完成请求和响应
通过以上讲解,我们可以得知 每个用户其实对应都是去找tomcat线程池中的一个线程来完成工作的, 使用完成后再进行回收,既然每个请求都是独立的,所以在每个用户去访问我们的工程时,我们可以使用threadlocal来做到线程隔离,每个线程操作自己的一份数据
温馨小贴士:关于threadlocal
如果小伙伴们看过threadLocal的源码,你会发现在threadLocal中,无论是他的put方法和他的get方法, 都是先从获得当前用户的线程,然后从线程中取出线程的成员变量map,只要线程不一样,map就不一样,所以可以通过这种方式来做到线程隔离
拦截器代码
1 | public class LoginInterceptor implements HandlerInterceptor { |
让拦截器生效
1 |
|
隐藏用户敏感信息
我们通过浏览器观察到此时用户的全部信息都在,这样极为不靠谱,所以我们应当在返回用户信息之前,将用户的敏感信息进行隐藏,采用的核心思路就是书写一个UserDto对象,这个UserDto对象就没有敏感信息了,我们在返回前,将有用户敏感信息的User对象转化成没有敏感信息的UserDto对象,那么就能够避免这个尴尬的问题了
在登录方法处修改
1 | //7.保存用户信息到session中 |
在拦截器处:
1 | //5.存在,保存用户信息到Threadlocal |
在UserHolder处:将user对象换成UserDTO
1 | public class UserHolder { |
session共享问题
核心思路分析:
每个tomcat中都有一份属于自己的session,假设用户第一次访问第一台tomcat,并且把自己的信息存放到第一台服务器的session中,但是第二次这个用户访问到了第二台tomcat,那么在第二台服务器上,肯定没有第一台服务器存放的session,所以此时 整个登录拦截功能就会出现问题,我们能如何解决这个问题呢?早期的方案是session拷贝,就是说虽然每个tomcat上都有不同的session,但是每当任意一台服务器的session修改时,都会同步给其他的Tomcat服务器的session,这样的话,就可以实现session的共享了
但是这种方案具有两个大问题
1、每台服务器中都有完整的一份session数据,服务器压力过大。
2、session拷贝数据时,可能会出现延迟
所以咱们后来采用的方案都是基于redis来完成,我们把session换成redis,redis数据本身就是共享的,就可以避免session共享的问题了
Redis代替session的业务流程
设计key的结构
首先我们要思考一下利用redis来存储数据,那么到底使用哪种结构呢?由于存入的数据比较简单,我们可以考虑使用String,或者是使用哈希,如下图,如果使用String,同学们注意他的value,用多占用一点空间,如果使用哈希,则他的value中只会存储他数据本身,如果不是特别在意内存,其实使用String就可以啦。
设计key的具体细节
所以我们可以使用String结构,就是一个简单的key,value键值对的方式,但是关于key的处理,session他是每个用户都有自己的session,但是redis的key是共享的,咱们就不能使用code了
在设计这个key的时候,我们之前讲过需要满足两点
1、key要具有唯一性
2、key要方便携带
如果我们采用phone:手机号这个的数据来存储当然是可以的,但是如果把这样的敏感数据存储到redis中并且从页面中带过来毕竟不太合适,所以我们在后台生成一个随机串token,然后让前端带来这个token就能完成我们的整体逻辑了
整体访问流程
当注册完成后,用户去登录会去校验用户提交的手机号和验证码,是否一致,如果一致,则根据手机号查询用户信息,不存在则新建,最后将用户数据保存到redis,并且生成token作为redis的key,当我们校验用户是否登录时,会去携带着token进行访问,从redis中取出token对应的value,判断是否存在这个数据,如果没有则拦截,如果存在则将其保存到threadLocal中,并且放行。
基于Redis实现短信登录
这里具体逻辑就不分析了,之前咱们已经重点分析过这个逻辑啦。
LoginIntercepter代码
1 | public class LoginInterceptor implements HandlerInterceptor { |
UserServiceImpl代码
1 |
|
解决状态登录刷新问题
初始方案思路总结:
在这个方案中,他确实可以使用对应路径的拦截,同时刷新登录token令牌的存活时间,但是现在这个拦截器他只是拦截需要被拦截的路径,假设当前用户访问了一些不需要拦截的路径,那么这个拦截器就不会生效,所以此时令牌刷新的动作实际上就不会执行,所以这个方案他是存在问题的
优化方案
既然之前的拦截器无法对不需要拦截的路径生效,那么我们可以添加一个拦截器,在第一个拦截器中拦截所有的路径,把第二个拦截器做的事情放入到第一个拦截器中,同时刷新令牌,因为第一个拦截器有了threadLocal的数据,所以此时第二个拦截器只需要判断拦截器中的user对象是否存在即可,完成整体刷新功能。
代码
RefreshTokenInterceptor
1 | public class RefreshTokenInterceptor implements HandlerInterceptor { |
LoginInterceptor
1 | public class LoginInterceptor implements HandlerInterceptor { |
商户查询缓存
什么是缓存?
前言:什么是缓存?
就像自行车,越野车的避震器
举个例子:越野车,山地自行车,都拥有”避震器”,防止车体加速后因惯性,在酷似”U”字母的地形上飞跃,硬着陆导致的损害,像个弹簧一样;
同样,实际开发中,系统也需要”避震器”,防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪;
这在实际开发中对企业讲,对产品口碑,用户评价都是致命的;所以企业非常重视缓存技术;
缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码(例如:
1 | 例1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发 |
由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效;
为什么要使用缓存
一句话:因为速度快,好用
缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力
实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为”避震器”,系统是几乎撑不住的,所以企业会大量运用到缓存技术;
但是缓存也会增加代码复杂度和运营的成本:
如何使用缓存
实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用
浏览器缓存:主要是存在于浏览器端的缓存
应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存
数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中
CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存
添加商户缓存
在我们查询商户信息时,我们是直接操作从数据库中去进行查询的,大致逻辑是这样,直接查询数据库那肯定慢咯,所以我们需要增加缓存
1 |
|
缓存模型和思路
标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。
代码如下
代码思路:如果缓存有,则直接返回,如果缓存不存在,则查询数据库,然后存入redis。
趁热打铁
- 完成了商户缓存,下面实现商户类型缓存(使用List)
1 |
|
1 | Result listShopTypes(); |
1 |
|
缓存更新策略
缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。
内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)
超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存
主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题
数据库缓存不一致解决方案:
由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,
其后果是:用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;
怎么解决呢?有如下几种方案
- Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案
- Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理
- Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致
数据库和缓存不一致采用什么方案
综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题
操作缓存和数据库时有三个问题需要考虑:
如果采用第一个方案,
- 那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来
删除缓存还是更新缓存?
更新缓存:每次更新数据库都更新缓存,无效写操作较多
删除缓存:更新数据库时让缓存失效,查询时再更新缓存
如何保证缓存与数据库的操作的同时成功或失败?
单体系统,将缓存与数据库操作放在一个事务
分布式系统,利用TCC等分布式事务方案
- 应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,
- 原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,
- 当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。
先操作缓存还是先操作数据库?
先删除缓存,再操作数据库
先操作数据库,再删除缓存
缓存更新的最佳实践方案
- 低一致性需求:使用Redis自带的内存淘汰机制
- 高一致性需求:主动更新,并以超时剔除作为兜底方案
- 读操作:
- 缓存命中则直接返回
- 缓存未命中则查询数据库,并写入缓存,设定超时时间
- 写操作
- 先写数据库,然后再删除缓存
- 要确保数据库与缓存操作的原子性
- 读操作:
实现商铺和缓存与数据库双写一致
核心思路如下:
修改ShopController中的业务逻辑,满足下面的需求:
根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间
根据id修改店铺时,先修改数据库,再删除缓存
1 |
|
1 |
|
1 | { |
代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题
缓存穿透问题的解决思路
缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。
常见的解决方案有两种:
- 缓存空对象
- 优点:实现简单,维护方便
- 缺点:
- 额外的内存消耗
- 可能造成短期的不一致
- 布隆过滤
- 优点:内存占用较少,没有多余key
- 缺点:
- 实现复杂
- 存在误判可能
- 缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,
我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,
简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了
- 布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,
- 通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,
- 如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,
- 但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,
- 假设布隆过滤器判断这个数据不存在,则直接返回
这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要是哈希思想,就可能存在哈希冲突
编码解决商品查询的缓存穿透问题:
核心思路如下:
在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的
现在的逻辑中:如果这个数据不存在,我们不会返回404 ,
- 还是会把这个数据写入到Redis中,并且将value设置为空,
- 再次发起查询时,我们如果发现命中之后,判断这个value是否是null,
- 如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。
核心:修改ShopServiceImpl代码
1 |
|
小总结:
缓存穿透产生的原因是什么?
- 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力
缓存穿透的解决方案有哪些?
- 缓存null值
- 布隆过滤
- 增强id的复杂度,避免被猜测id规律
- 做好数据的基础格式校验
- 加强用户权限校验
- 做好热点参数的限流
缓存雪崩问题及解决思路
缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:
- 给不同的Key的TTL添加随机值,让其在不同时间段分批失效
- 利用Redis集群提高服务的可用性(使用一个或者多个哨兵(
Sentinel
)实例组成的系统,对redis节点进行监控,在主节点出现故障的情况下,能将从节点中的一个升级为主节点,进行故障转义,保证系统的可用性。 ) - 给缓存业务添加降级限流策略
- 给业务添加多级缓存(浏览器访问静态资源时,优先读取浏览器本地缓存;访问非静态资源(ajax查询数据)时,访问服务端;请求到达Nginx后,优先读取Nginx本地缓存;如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat);如果Redis查询未命中,则查询Tomcat;请求进入Tomcat后,优先查询JVM进程缓存;如果JVM进程缓存未命中,则查询数据库)
缓存击穿问题及解决思路
缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
常见的解决方案有两种:
- 互斥锁
- 逻辑过期
逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,
- 此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,
- 但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法,
- 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,
- 接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大
解决方案一、使用锁来解决:
因为锁能实现互斥性。
- 假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,
- 但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,
- 我们可以采用tryLock方法 + double check来解决这样的问题。
假设现在线程1过来访问,
- 他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,
- 假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,
- 直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。
解决方案二、逻辑过期方案
方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,
- 假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,
我们可以采用逻辑过期方案。
- 我们把过期时间设置在 redis的value中,
- 注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。
- 假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,
- 那么其他线程会进行阻塞,获得了锁的线程1他会开启一个 新线程2去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,
- 假设现在线程3过来访问,由于线程2持有着锁,所以线程3无法获得锁,
- 线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。
这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。
进行对比
互斥锁方案:由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响
逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦
利用互斥锁解决缓存击穿问题
核心思路:
- 相较于原来从缓存中查询不到数据后直接查询数据库而言,
- 现在的方案是 进行查询之后,
- 如果从缓存没有查询到数据,则进行互斥锁的获取,
- 获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,
- 过一会再进行尝试,直到获取到锁为止,才能进行查询
如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿
需求:修改根据id查询商铺的业务,基于互斥锁方式来解决缓存击穿问题
操作锁的代码:
核心思路就是利用redis的setnx方法来表示获取锁,
- 该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true,
- 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,
- 我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。
1 | private boolean tryLock(String key) { |
1 |
|
利用逻辑过期解决缓存击穿问题
需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题
思路分析:当用户开始查询redis时,判断是否命中,
- 如果没有命中则直接返回空数据,不查询数据库,
- 而一旦命中后,将value取出,判断value中的过期时间是否满足,
- 如果没有过期,则直接返回redis中的数据,
- 如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。
如果封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你
步骤一、
新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。
1 |
|
步骤二、
在ShopServiceImpl 新增此方法,利用单元测试进行缓存预热
1 | public void saveShop2Redis(Long id, Long expireSeconds) throws InterruptedException { |
在测试类中
1 |
|
步骤三:正式代码
ShopServiceImpl
1 | private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10); |
封装Redis工具类
基于StringRedisTemplate封装一个缓存工具类,满足下列需求:
方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
- public void set()
方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题
- public void setWithLogicalExpire()
方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
- public
R queryWithPassThrough()
- public
方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题
- public
R queryWithLogicalExpire()
- public
将逻辑进行封装
- 封装设置缓存方法
1 | public void set(String key, Object value, Long time, TimeUnit unit) { |
- 封装缓存击穿解决方案
1 | public <R, ID> R queryWithPassThrough( |
- 封装逻辑过期解决方案
- 此处采用了:
泛型,Function 方法
1 | private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10); |
- CacheClient
1 |
|
在ShopServiceImpl 中
1 |
|
优惠卷秒杀(全局唯一ID、乐观锁)
全局唯一ID
每个店铺都可以发布优惠券:
当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,
而订单表如果使用数据库自增ID就存在一些问题:
id的规律性太明显
受单表数据量的限制
场景分析一:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,
- 比如商城在一天时间内,卖出了多少单,这明显不合适。
场景分析二:随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,
- 数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,
- 所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。
全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:
为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
ID的组成部分:
符号位:1bit,永远为0
时间戳:31bit,以秒为单位,可以使用69年
序列号:32bit,秒内的计数器,支持每秒产生
2^32
个不同ID
Redis实现全局唯一Id
return timestamp << COUNT_BITS | count;
解释:- 利用位运算符
<<
把时间戳向右移动 COUNT_BITS 位 - 再利用
|
或运算符 把空出来的 0 用序列号补齐
- 利用位运算符
时间戳(31bit) 序列号(32bit)
0 - 00000000 00000000 00000000 00000000 - 00000000 00000000 00000000 00000000
1 |
|
测试类
知识小贴士:关于countdownlatch
countdownlatch名为信号枪:主要的作用是同步协调在多线程的等待于唤醒问题
我们如果没有CountDownLatch ,
- 那么由于程序是异步的,
- 当异步程序没有执行完时,主线程就已经执行完了,
- 然后我们期望的是分线程全部走完之后,主线程再走,所以我们此时需要使用到CountDownLatch
CountDownLatch 中有两个最重要的方法
countDown
await
await 方法
是阻塞方法,
我们担心分线程没有执行完时,main线程就先执行,所以使用await可以让main线程阻塞,
那么什么时候main线程不再阻塞呢?
- 当CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,
- 那么什么时候CountDownLatch 维护的变量变为0 呢,
- 我们只需要调用一次countDown ,内部变量就减少1,
- 我们让分线程和变量绑定, 执行完一个分线程就减少一个变量,
- 当分线程全部走完,CountDownLatch 维护的变量就是0,
- 此时await就不再阻塞,统计出来的时间也就是所有分线程执行完后的时间。
- 当CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,
1 |
|
总结
全局唯一ID生成策略:
- UUID
- Redis 自增
- snowflake 算法
- 数据库自增
Redis 自增ID策略:
- 每天一个key,方便统计订单量
- ID构造是 时间戳 + 计数器
添加优惠卷
每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:
- tb_voucher:优惠券的基本信息,优惠金额、使用规则等
- tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息
平价卷由于优惠力度并不是很大,所以是可以任意领取
而代金券由于优惠力度大,所以像第二种卷,就得限制数量,从表结构上也能看出,特价卷除了具有优惠卷的基本信息以外,还具有库存,抢购时间,结束时间等等字段
添加秒杀券Json数据
1 | { |
新增普通券代码: VoucherController
1 |
|
新增秒杀券代码:VoucherController
1 |
|
VoucherServiceImpl
1 |
|
实现秒杀下单
下单核心思路:当我们点击抢购时,会触发右侧的请求,我们只需要编写对应的controller即可
秒杀下单应该思考的内容:
下单时需要判断两点:
- 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
- 库存是否充足,不足则无法下单
下单核心逻辑分析:
当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件
比如时间是否充足,如果时间充足,则进一步判断库存是否足够,
如果两者都满足,则扣减库存,创建订单,然后返回订单id,
如果有一个条件不满足则直接结束。
VoucherOrderServiceImpl
1 |
|
库存超卖问题分析
有关超卖问题分析:在我们原有代码中是这么写的
1 | if (voucher.getStock() < 1) { |
假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,
- 此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,
- 那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,
- 此时就会出现库存的超卖问题。
超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:见下图:
悲观锁:
悲观锁可以实现对于数据的串行化执行,
- 比如syn,和lock都是悲观锁的代表,
- 同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
乐观锁:
会有一个版本号,每次操作数据会对版本号+1,
- 再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,
- 这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,
- 如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas
1、乐观锁的典型代表:就是cas,
- 利用cas进行无锁化机制加锁,var5 是操作前读取的内存值,
while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值
其中do while 是为了在操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次。
1 | int var5; |
2、课程中的使用方式:
课程中的使用方式是没有像cas一样带自旋的操作,也没有对version的版本号+1 ,
- 他的操作逻辑是在操作时,对版本号进行+1 操作,
- 然后要求version 如果是1 的情况下,才能操作,
- 那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题,
- 此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,
- 所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功
乐观锁解决超卖问题
修改代码方案一
VoucherOrderServiceImpl 在扣减库存时,改为:
1 | boolean success = seckillVoucherService.update() |
以上逻辑的核心含义是:
- 只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的,
- 但是以上这种方式通过测试发现会有很多失败的情况,
- 失败的原因:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,
- 但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败
修改代码方案二
之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,
- 所以我们的乐观锁需要变一下,改成stock大于0 即可
1 | boolean success = seckillVoucherService.update() |
知识小扩展:
针对cas中的自旋压力过大,我们可以使用Longaddr这个类去解决
- Java8 提供的一个对AtomicLong改进后的一个类,LongAdder
大量线程并发更新一个原子性的时候,天然的问题就是自旋,会导致并发性问题,当然这也比我们直接使用syn来的好
所以利用这么一个类,LongAdder来进行优化
如果获取某个值,则会对cell和base的值进行递增,最后返回一个完整的值
总结
超卖这样的线程安全问题,解决方案有哪些?
- 悲观锁:添加同步锁,让线程串行执行
- 优点:简单粗暴
- 缺点:性能一般
- 乐观锁:不加锁,在更新时判断是否有其他线程在修改
- 优点:性能好
- 缺点:存在成功率低的问题
优惠券秒杀—-一人一单
需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单
现在的问题在于:
优惠卷是为了引流,
- 但是目前的情况是,一个人可以无限制的抢这个优惠卷,
- 所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单
具体操作逻辑如下:
- 比如时间是否充足,如果时间充足,则进一步判断库存是否足够,
- 然后再根据优惠卷id和用户id查询是否已经下过这个订单,如果下过这个订单,则不再下单,否则进行下单
VoucherOrderServiceImpl
初步代码:增加一人一单逻辑
1 |
|
存在问题:现在的问题还是和之前一样,
- 并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,
- 但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作
注意:在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁
1 |
|
但是这样添加锁,锁的粒度太粗了,
- 在使用锁过程中,控制锁粒度 是一个非常重要的事情,
- 因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,
- 以下这段代码需要修改为:
- intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法
1 |
|
但是以上代码还是存在问题,
- 问题的原因在于当前方法被spring的事务控制,
- 如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题,
- 所以我们选择将当前方法整体包裹起来,确保事务不会出现问题:如下:
在seckillVoucher 方法中,添加以下逻辑,这样就能保证事务的特性,同时也控制了锁的粒度
1 | Long userId = UserHolder.getUser().getId(); |
但是以上做法依然有问题,
- 因为你调用的方法,其实是this.的方式调用的,
- 事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务
此处通过 AopContext.currentProxy()
方法获取代理对象 IVoucherOrderService
1 | Long userId = UserHolder.getUser().getId(); |
1 |
|
集群环境下的并发问题
通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。
1、我们将服务启动两份,端口分别为8081和8082:
2、然后修改nginx的conf目录下的nginx.conf文件,配置反向代理和负载均衡:
具体操作(略)
有关锁失效原因分析
由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,
- 那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,
- 那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,
- 但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,
- 但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。
分布式锁
基本原理和实现方式对比
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。
分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
那么分布式锁他应该满足一些什么样的条件呢?
可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思
互斥:互斥是分布式锁的最基本的条件,使得程序串行执行
高可用:程序不易崩溃,时时刻刻都保证较高的可用性
高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能
安全性:安全也是程序中必不可少的一环
常见的分布式锁有三种
Mysql:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见
Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁
Zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案,由于本套视频并不讲解zookeeper的原理和分布式锁的实现,所以不过多阐述
Redis分布式锁的实现核心思路
实现分布式锁时需要实现的两个基本方法:
获取锁:
- 互斥:确保只能有一个线程获取锁
- 非阻塞:尝试一次,成功返回true,失败返回false
1 | # 添加锁,利用setnx的互斥特性 |
释放锁:
- 手动释放
- 超时释放:获取锁时添加一个超时时间
1 | # 释放锁,删除即可 |
核心思路:
我们利用redis 的setNx 方法,当有多个线程进入时,我们就利用该方法,
- 第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,
- 那么他去执行业务,然后再删除锁,退出锁逻辑,
没有抢到锁的哥们,等待一定时间后重试即可
实现分布式锁版本一
需求:定义一个类,实现下面接口,利用Redis实现分布式锁功能
- 加锁逻辑
锁的基本接口
1 | public interface ILock { |
SimpleRedisLock
获取锁逻辑
利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性
1 | private static final String KEY_PREFIX="lock:" |
释放锁逻辑
释放锁,防止删除别人的锁
1 | public void unlock() { |
1 | public class SimpleRedisLock implements ILock{ |
修改业务代码
1 | public Result seckillVoucher(Long voucherId) { |
Redis分布式锁误删情况说明
逻辑说明:
持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,
- 这时其他线程,线程2来尝试获得锁,就拿到了这把锁,
- 然后线程2在持有锁执行过程中,线程1反应过来,继续执行,
- 而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明
解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,
- 如果不属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,
- 线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,
- 但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,
- 如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。
解决Redis分布式锁误删问题
需求:修改之前的分布式锁实现,
满足:在获取锁时存入线程标示(可以用UUID表示)
在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致
- 如果一致则释放锁
- 如果不一致则不释放锁
核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。
具体代码如下:
加锁
1 | private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-"; |
释放锁
1 | public void unlock() { |
有关代码实操说明:
在我们修改完此处代码后,我们重启工程,然后启动两个线程,
- 第一个线程持有锁后,手动释放锁,
- 第二个线程 此时进入到锁内部,再放行第一个线程,此时第一个线程由于锁的value值并非是自己,所以不能释放锁,也就无法删除别人的锁,
- 此时第二个线程能够正确释放锁,通过这个案例初步说明我们解决了锁误删的问题。
分布式锁的原子性问题
更为极端的误删逻辑说明:
线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,
- 比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,
- 那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,
- 相当于条件判断并没有起到作用,这就是删锁时的原子性问题,
- 之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的,我们要防止刚才的情况发生,
Lua脚本解决多条命令原子性问题
Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。
Lua是一种编程语言,它的基本语法大家可以参考网站:https://www.runoob.com/lua/lua-tutorial.html,
这里重点介绍Redis提供的调用函数,
- 我们可以使用lua去操作redis,又能保证他的原子性,这样就可以实现拿锁比锁删锁是一个原子性动作了,
- 作为Java程序员这一块并不作一个简单要求,并不需要大家过于精通,只需要知道他有什么作用即可。
这里重点介绍Redis提供的调用函数,语法如下:
1 | redis.call('命令名称', 'key', '其它参数', ...) |
例如,我们要执行set name jack,则脚本是这样:
1 | # 执行 set name jack |
例如,我们要先执行set name Rose,再执行get name,则脚本如下:
1 | # 先执行 set name jack |
写好脚本以后,需要用Redis命令来调用脚本,调用脚本的常见命令如下:
例如,我们要执行 redis.call(‘set’, ‘name’, ‘jack’) 这个脚本,语法如下:
如果脚本中的key、value不想写死,可以作为参数传递。key类型参数会放入KEYS数组,其它参数会放入ARGV数组,在脚本中可以从KEYS和ARGV数组获取这些参数:
接下来我们来回顾一下我们释放锁的逻辑:
释放锁的业务流程是这样的
1、获取锁中的线程标示
2、判断是否与指定的标示(当前线程标示)一致
3、如果一致则释放锁(删除)
4、如果不一致则什么都不做
如果用Lua脚本来表示则是这样的:
最终我们操作redis的拿锁比锁删锁的lua脚本就会变成这样
1 | -- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示 |
利用Java代码调用Lua脚本改造分布式锁
lua脚本本身并不需要大家花费太多时间去研究,只需要知道如何调用,大致是什么意思即可,所以在笔记中并不会详细的去解释这些lua表达式的含义。
我们的RedisTemplate中,可以利用execute方法去执行lua脚本,参数对应关系就如下图股
Java代码
1 | private static final DefaultRedisScript<Long> UNLOCK_SCRIPT; |
- 经过以上代码改造后,我们就能够实现 拿锁比锁删锁的原子性动作了~
小总结:
基于Redis的分布式锁实现思路:
- 利用set nx ex获取锁,并设置过期时间,保存线程标示
- 释放锁时先判断线程标示是否与自己一致,一致则删除锁
- 特性:
- 利用set nx满足互斥性
- 利用set ex保证故障时锁依然能释放,避免死锁,提高安全性
- 利用Redis集群保证高可用和高并发特性
- 特性:
笔者总结:我们一路走来,利用添加过期时间,防止死锁问题的发生,
- 但是有了过期时间之后,可能出现误删别人锁的问题,
- 这个问题我们开始是利用删之前 通过拿锁,比锁,删锁这个逻辑来解决的,也就是删之前判断一下当前这把锁是否是属于自己的,
- 但是现在还有原子性问题,也就是我们没法保证拿锁比锁删锁是一个原子性的动作,
- 最后通过lua表达式来解决这个问题
但是目前还剩下一个问题锁不住,什么是锁不住呢,
- 你想一想,如果当过期时间到了之后,我们可以给他续期一下,比如续个30s,
- 就好像是网吧上网, 网费到了之后,然后说,来,网管,再给我来10块的,
- 是不是后边的问题都不会发生了,那么续期问题怎么解决呢,可以依赖于我们接下来要学习redission啦
测试逻辑:
第一个线程进来,得到了锁,手动删除锁,模拟锁超时了,其他线程会执行lua来抢锁,当第一个线程利用lua删除锁时,lua能保证他不能删除他的锁,第二个线程删除锁时,利用lua同样可以保证不会删除别人的锁,同时还能保证原子性。
分布式锁-redission
分布式锁-redission功能介绍
基于setnx实现的分布式锁存在下面的问题:
重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,
- 可重入锁的意义在于防止死锁,比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,
- 假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?
- 所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。
不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:
- 当线程在获得锁失败后,他应该能再次尝试获得锁。
超时释放:我们在加锁时增加了过期时间,这样的我们可以防止死锁,
- 但是如果卡顿的时间超长,虽然我们采用了lua表达式防止删锁的时候,误删别人的锁,
- 但是毕竟没有锁住,有安全隐患
主从一致性: 如果Redis提供了主从集群,当我们向集群写数据时,
- 主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。
那么什么是Redission呢
Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。
- 它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。
- 官网地址:https://redisson.org
- Github地址:https://github.com/redisson/redisson
Redission提供了分布式锁的多种多样的功能
- 可重入锁(Reentrant Lock)
- 公平锁(Fair Lock)
- 联锁(MultiLock)
- 红锁(RedLock)
- 读写锁(ReadWriteLock)
- 信号量(Semaphore)
- 可过期性信号量(PermitExpirableSemaphore)
- 闭锁(CountDownLatch)
分布式锁-Redission快速入门
- 引入依赖:
1 | <dependency> |
- 配置Redisson客户端,在config包下新建
RedissonConfig
类
1 |
|
- 使用Redission的分布式锁
1 |
|
- 在 VoucherOrderServiceImpl
注入RedissonClient
1 |
|
分布式锁-redission可重入锁原理
在Lock锁中,他是借助于等曾的一个voaltile的一个state变量来记录重入的状态的
- 如果当前
没有
人持有这把锁,那么state = 0
- 如果
有
人持有这把锁,那么state = 1
- 如果持有这把锁的人再次持有这把锁,那么state会
+1
- 如果持有这把锁的人再次持有这把锁,那么state会
- 如果对于
synchronize
而言,他在c语言代码中会有一个count - 原理与
state
类似,也是重入一次就+1
,释放一次就-1
,直至减到0,表示这把锁没有被人持有
- 如果当前
在redisson中,我们也支持可重入锁
- 在分布式锁中,它采用hash结构来存储锁,其中外层key表示这把锁是否存在,内层key则记录当前这把锁被哪个线程持有
method1在方法内部调用method2,method1和method2出于同一个线程,那么method1已经拿到一把锁了,想进入method2中拿另外一把锁,必然是拿不到的,于是就出现了死锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
private RedissonClient redissonClient;
private RLock lock;
void setUp() {
lock = redissonClient.getLock("lock");
}
void method1() {
boolean success = lock.tryLock();
if (!success) {
log.error("获取锁失败,1");
return;
}
try {
log.info("获取锁成功");
method2();
} finally {
log.info("释放锁,1");
lock.unlock();
}
}
void method2() {
RLock lock = redissonClient.getLock("lock");
boolean success = lock.tryLock();
if (!success) {
log.error("获取锁失败,2");
return;
}
try {
log.info("获取锁成功,2");
} finally {
log.info("释放锁,2");
lock.unlock();
}
}所以我们需要额外判断,method1和method2是否处于同一线程,如果是同一个线程,则可以拿到锁,但是state会
+1
,之后执行method2中的方法,释放锁,释放锁的时候也只是将state进行-1
,只有减至0,才会真正释放锁由于我们需要额外存储一个state,所以用字符串型
SET NX EX
是不行的,需要用到Hash
结构,但是Hash
结构又没有NX
这种方法,所以我们需要将原有的逻辑拆开,进行手动判断
- 为了保证原子性,所以流程图中的业务逻辑也是需要我们用Lua来实现的
1 | local key = KEYS[1]; -- 锁的key |
1 | local key = KEYS[1]; |
源码对照
- 获取锁源码
1 | local key = KEYS[1]; -- 锁的key |
1 | local key = KEYS[1]; |
Lua 代码实现
获取锁的Lua脚本: 释放锁的Lua脚本:
分布式锁-redission锁重试和WatchDog机制
说明:由于课程中已经说明了有关tryLock的源码解析以及其看门狗原理,所以笔者在这里给大家分析lock()方法的源码解析,希望大家在学习过程中,能够掌握更多的知识
前面我们分析的是空参的tryLock方法,现在我们来分析一下这个带参数的
1
2
3
4
5JAVA
<T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {
this.internalLockLeaseTime = unit.toMillis(leaseTime);
return this.evalWriteAsync(this.getName(), LongCodec.INSTANCE, command, "if (redis.call('exists', KEYS[1]) == 0) then redis.call('hincrby', KEYS[1], ARGV[2], 1); redis.call('pexpire', KEYS[1], ARGV[1]); return nil; end; if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then redis.call('hincrby', KEYS[1], ARGV[2], 1); redis.call('pexpire', KEYS[1], ARGV[1]); return nil; end; return redis.call('pttl', KEYS[1]);", Collections.singletonList(this.getName()), this.internalLockLeaseTime, this.getLockName(threadId));
}源码分析
tryAcquireAsync
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19JAVA
private <T> RFuture<Long> tryAcquireAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId) {
if (leaseTime != -1L) {
return this.tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
} else {
// 如果没有指定释放时间时间,则指定默认释放时间为getLockWatchdogTimeout,底层源码显示是30*1000ms,也就是30秒
RFuture<Long> ttlRemainingFuture = this.tryLockInnerAsync(waitTime, this.commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
if (e == null) {
if (ttlRemaining == null) {
this.scheduleExpirationRenewal(threadId);
}
}
});
return ttlRemainingFuture;
}
}tryLock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
long time = unit.toMillis(waitTime);
long current = System.currentTimeMillis();
long threadId = Thread.currentThread().getId();
Long ttl = this.tryAcquire(waitTime, leaseTime, unit, threadId);
//判断ttl是否为null
if (ttl == null) {
return true;
} else {
//计算当前时间与获取锁时间的差值,让等待时间减去这个值
time -= System.currentTimeMillis() - current;
//如果消耗时间太长了,直接返回false,获取锁失败
if (time <= 0L) {
this.acquireFailed(waitTime, unit, threadId);
return false;
} else {
//等待时间还有剩余,再次获取当前时间
current = System.currentTimeMillis();
//订阅别人释放锁的信号
RFuture<RedissonLockEntry> subscribeFuture = this.subscribe(threadId);
//在剩余时间内,等待这个信号
if (!subscribeFuture.await(time, TimeUnit.MILLISECONDS)) {
if (!subscribeFuture.cancel(false)) {
subscribeFuture.onComplete((res, e) -> {
if (e == null) {
//取消订阅
this.unsubscribe(subscribeFuture, threadId);
}
});
}
//剩余时间内没等到,返回false
this.acquireFailed(waitTime, unit, threadId);
return false;
} else {
try {
//如果剩余时间内等到了别人释放锁的信号,再次计算当前剩余最大等待时间
time -= System.currentTimeMillis() - current;
if (time <= 0L) {
//如果剩余时间为负数,则直接返回false
this.acquireFailed(waitTime, unit, threadId);
boolean var20 = false;
return var20;
} else {
boolean var16;
do {
//如果剩余时间等到了,dowhile循环重试获取锁
long currentTime = System.currentTimeMillis();
ttl = this.tryAcquire(waitTime, leaseTime, unit, threadId);
if (ttl == null) {
var16 = true;
return var16;
}
time -= System.currentTimeMillis() - currentTime;
if (time <= 0L) {
this.acquireFailed(waitTime, unit, threadId);
var16 = false;
return var16;
}
currentTime = System.currentTimeMillis();
if (ttl >= 0L && ttl < time) {
((RedissonLockEntry)subscribeFuture.getNow()).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
} else {
((RedissonLockEntry)subscribeFuture.getNow()).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);
}
time -= System.currentTimeMillis() - currentTime;
} while(time > 0L);
this.acquireFailed(waitTime, unit, threadId);
var16 = false;
return var16;
}
} finally {
this.unsubscribe(subscribeFuture, threadId);
}
}
}
}
}scheduleExpirationRenewal
1
2
3
4
5
6
7
8
9
10
11
12private void scheduleExpirationRenewal(long threadId) {
ExpirationEntry entry = new ExpirationEntry();
//不存在,才put,表明是第一次进入,不是重入
ExpirationEntry oldEntry = (ExpirationEntry)EXPIRATION_RENEWAL_MAP.putIfAbsent(this.getEntryName(), entry);
if (oldEntry != null) {
oldEntry.addThreadId(threadId);
} else {
//如果是第一次进入,则跟新有效期
entry.addThreadId(threadId);
this.renewExpiration();
}
}renewExpiration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31private void renewExpiration() {
ExpirationEntry ee = (ExpirationEntry)EXPIRATION_RENEWAL_MAP.get(this.getEntryName());
if (ee != null) {
//Timeout是一个定时任务
Timeout task = this.commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
public void run(Timeout timeout) throws Exception {
ExpirationEntry ent = (ExpirationEntry)RedissonLock.EXPIRATION_RENEWAL_MAP.get(RedissonLock.this.getEntryName());
if (ent != null) {
Long threadId = ent.getFirstThreadId();
if (threadId != null) {
//重置有效期
RFuture<Boolean> future = RedissonLock.this.renewExpirationAsync(threadId);
future.onComplete((res, e) -> {
if (e != null) {
RedissonLock.log.error("Can't update lock " + RedissonLock.this.getName() + " expiration", e);
} else {
if (res) {
//然后调用自己,递归重置有效期
RedissonLock.this.renewExpiration();
}
}
});
}
}
}
//internalLockLeaseTime是之前WatchDog默认有效期30秒,那这里就是 30 / 3 = 10秒之后,才会执行
}, this.internalLockLeaseTime / 3L, TimeUnit.MILLISECONDS);
ee.setTimeout(task);
}
}renewExpirationAsync
重点看lua脚本,先判断锁是不是自己的,然后更新有效时间1
2
3
4JAVA
protected RFuture<Boolean> renewExpirationAsync(long threadId) {
return this.evalWriteAsync(this.getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN, "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then redis.call('pexpire', KEYS[1], ARGV[1]); return 1; end; return 0;", Collections.singletonList(this.getName()), this.internalLockLeaseTime, this.getLockName(threadId));
}那么之前的重置有效期的行为该怎么终止呢?当然是释放锁的时候会终止
cancelExpirationRenewal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22JAVA
void cancelExpirationRenewal(Long threadId) {
//将之前的线程终止掉
ExpirationEntry task = (ExpirationEntry)EXPIRATION_RENEWAL_MAP.get(this.getEntryName());
if (task != null) {
if (threadId != null) {
task.removeThreadId(threadId);
}
if (threadId == null || task.hasNoThreads()) {
//获取之前的定时任务
Timeout timeout = task.getTimeout();
if (timeout != null) {
//取消
timeout.cancel();
}
EXPIRATION_RENEWAL_MAP.remove(this.getEntryName());
}
}
}
总结
Redisson分布式锁原理:
可重入:利用hash结构记录线程id和重入次数
可重试:利用信号量和PubSub功能实现等待、唤醒,获取锁失败的重试机制
超时续约:利用watchDog,每隔一段时间(releaseTime / 3),重置超时时间
分布式锁-redission锁的MutiLock原理
为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例
此时我们去写命令,写在主机上, 主机会将数据同步给从机,
- 但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,
- 并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。
为了解决这个问题,redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,
- 每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主从节点上,
- 只有所有的服务器都写入成功,此时才是加锁成功,
- 假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。
那么MutiLock 加锁原理是什么呢?笔者画了一幅图来说明
当我们去设置了多个锁时,redission会将多个锁添加到一个集合中,然后用while循环去不停去尝试拿锁,但是会有一个总共的加锁时间,这个时间是用需要加锁的个数 * 1500ms ,假设有3个锁,那么时间就是4500ms,假设在这4500ms内,所有的锁都加锁成功, 那么此时才算是加锁成功,如果在4500ms有线程加锁失败,则会再次去进行重试.
分布式锁总结
1)不可重入Redis分布式锁:
原理:利用setnx的互斥性;利用ex避免死锁;释放锁时判断线程标示
缺陷:不可重入、无法重试、锁超时失效
2)可重入的Redis分布式锁:
原理:利用hash结构,记录线程标示和重入次数;利用watchDog延续锁时间;利用信号量控制锁重试等待
缺陷:redis宕机引起锁失效问题
3)Redisson的multiLock:
原理:多个独立的Redis节点,必须在所有节点都获取重入锁,才算获取锁成功
缺陷:运维成本高、实现复杂